Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 571
Filtrar
1.
Reprod Toxicol ; 125: 108580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522559

RESUMO

Preterm birth in humans (PTB), defined as birth prior to 37 weeks of gestation, is one of the most important causes of neonatal morbidity and mortality and is associated with adverse health outcomes later in life. Attributed to many different etiological factors, estimated 15.1 million or 11.1% of births each year are preterm, which is more than 1 per 10 livebirths globally. Environmental pollution is a well-established risk factor that could influence the pathogenesis of PTB. Increasing evidence has shown an association between maternal exposure to endocrine disrupting chemicals (EDCs) and PTB. This scoping review aims to summarize current research on the association between EDC exposure and PTB in humans. Database PubMed was used to identify articles discussing the effect of selected EDCs, namely bisphenol A, bisphenol S, bisphenol F, parabens, and triclosan, found in plastics, cosmetics and other personal care products, on PTB occurrence. Regardless of some inconsistences in the findings across studies, the reviewed studies suggest a potential association between involuntary exposure to reviewed EDCs and the risk of PTB. However, further studies are needed to delineate exact correlations and mechanisms through which EDC exposure causes PTB so that efficient preventative measures could be implemented. Until then, health care providers should inform women about possible EDC exposure thus empowering them to make healthy choices and at the same time decrease the EDC negative effects.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Fenóis , Nascimento Prematuro , Triclosan , Humanos , Recém-Nascido , Feminino , Disruptores Endócrinos/toxicidade , Parabenos/efeitos adversos , Triclosan/toxicidade , Nascimento Prematuro/epidemiologia
2.
Sci Total Environ ; 924: 171701, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490412

RESUMO

Triclosan (TCS), a biocide used in various day-to-day products, has been associated with several toxic effects in aquatic organisms. In the present study, biochemical and hematological alterations were evaluated after 14 d (sublethal) exposure of tap water (control), acetone (solvent control), 5, 10, 20, and 50 µg/L (environmentally relevant concentrations) TCS to the embryos/hatchlings of Cirrhinus mrigala, a major freshwater carp distributed in tropic and sub-tropical areas of Asia. A concentration-dependent increase in the content of urea and protein carbonyl, while a decrease in the total protein, glucose, cholesterol, triglycerides, uric acid, and bilirubin was observed after the exposure. Hematological analysis revealed a decrease in the total erythrocyte count, hemoglobin, and partial pressure of oxygen, while there was an increase in the total leucocyte count, carbon dioxide, and partial pressure of carbon dioxide and serum electrolytes. Comet assay demonstrates a concentration-dependent increase in tail length, tail moment, olive tail moment, and percent tail DNA. An amino acid analyzer showed a TCS-dose-dependent increase in various amino acids. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis revealed different proteins ranging from 6.5 to 200 kDa, demonstrating TCS-induced upregulation. Fourier transform infrared spectra analysis exhibited a decline in peak area percents with an increase in the concentration of TCS in water. Curve fitting of amide I (1,700-1600 cm-1) showed a decline in α-helix and turns and an increase in ß-sheets. Nuclear magnetic resonance study also revealed concentration-dependent alterations in the metabolites after 14 d exposure. TCS caused alterations in the biomolecules and heamatological parameters of fish, raising the possibility that small amounts of TCS may change the species richness in natural aquatic habitats. In addition, consuming TCS-contaminated fish may have detrimental effects on human health. Consequently, there is a need for the proper utilisation and disposal of this hazardous compound in legitimate quantities.


Assuntos
Carpas , Cyprinidae , Triclosan , Poluentes Químicos da Água , Animais , Humanos , Triclosan/toxicidade , Triclosan/metabolismo , Dióxido de Carbono/metabolismo , Cyprinidae/metabolismo , Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
3.
Sci Total Environ ; 922: 171270, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428603

RESUMO

Although triclosan has been ubiquitously detected in aquatic environment and is known to have various adverse effects to fish, details on its uptake, bioconcentration, and elimination in fish tissues are still limited. This study investigated the uptake and elimination toxicokinetics, bioconcentration, and biotransformation potential of triclosan in Nile tilapia (Oreochromis niloticus) exposed to environmentally-relevant concentrations under semi-static regimes for 7 days. For toxicokinetics, triclosan reached a plateau concentration within 5-days of exposure, and decreased to stable concentration within 5 days of elimination. Approximately 50 % of triclosan was excreted by fish through feces, and up to 29 % of triclosan was excreted through the biliary excretion. For fish exposed to 200 ng·L-1, 2000 ng·L-1, and 20,000 ng·L-1, the bioconcentration factors (log BCFs) of triclosan in fish tissues obeyed similar order: bile ≈ intestine > gonad ≈ stomach > liver > kidney ≈ gill > skin ≈ plasma > brain > muscle. The log BCFs of triclosan in fish tissues are approximately maintained constants, no matter what triclosan concentrations in exposure water. Seven biotransformation products of triclosan, involved in both phase I and phase II metabolism, were identified in this study, which were produced through hydroxylation, bond cleavages, dichlorination, and sulfation pathways. Metabolite of triclosan-O-sulfate was detected in all tissues of tilapia, and more toxic product of 2,4-dichlorophenol was also found in intestine, gonad, and bile of tilapia. Meanwhile, two metabolites of 2,4-dichlorophenol-O-sulfate and monohydroxy-triclosan-O-sulfate were firstly discovered in the skin, liver, gill, intestine, gonad, and bile of tilapia in this study. These findings highlight the importance of considering triclosan biotransformation products in ecological assessment. They also provide a scientific basis for health risk evaluation of triclosan to humans, who are associated with dietary exposure through ingesting fish.


Assuntos
Clorofenóis , Ciclídeos , Tilápia , Triclosan , Poluentes Químicos da Água , Animais , Humanos , Tilápia/metabolismo , Triclosan/toxicidade , Triclosan/metabolismo , Distribuição Tecidual , Ciclídeos/metabolismo , Biotransformação , Sulfatos/metabolismo , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 346: 123658, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432343

RESUMO

The transmission of antibiotic resistance genes (ARGs) in pathogenic bacteria affects culture animal health, endangers food safety, and thus gravely threatens public health. However, information about the effect of disinfectants - triclosan (TCS) on ARGs dissemination of bacterial pathogens in aquatic animals is still limited. One Citrobacter freundii (C. freundii) strain harboring tet(X4)-resistant plasmid was isolated from farmed grass carp guts, and subsequently conjugative transfer frequency from C. freundii to Escherichia coli C600 (E. coli C600) was analyzed under different mating time, temperature, and ratio. The effect of different concentrations of TCS (0.02, 0.2, 2, 20, 200 and 2000 µg/L) on the conjugative transfer was detected. The optimum conditions for conjugative transfer were at 37 °C for 8h with mating ratio of 2:1 or 1:1 (C. freundii: E. coli C600). The conjugative transfer frequency was significantly promoted under TCS treatment and reached the maximum value under 2.00 µg/L TCS with 18.39 times that of the control group. Reactive oxygen species (ROS), superoxide dismutase (SOD) and catalase (CAT) activities, cell membrane permeability of C. freundii and E. coli C600 were obviously increased under TCS stress. Scanning electron microscope showed that the cell membrane surface of the conjugative strains was wrinkled and pitted, even broken at 2.00 µg/L TCS, while lysed or even ruptured at 200.00 µg/L TCS. In addition, TCS up-regulated expression levels of oxidative stress genes (katE, hemF, bcp, hemA, katG, ahpF, and ahpC) and cell membrane-related genes (fimC, bamE and ompA) of donor and recipient bacteria. Gene Ontology (GO) enrichment demonstrated significant changes in categories relevant to pilus, porin activity, transmembrane transporter activity, transferase activity, hydrolase activity, material transport and metabolism. Taken together, a tet(X4)-resistant plasmid could horizontal transmission among different pathogens, while TCS can promote the propagation of the resistant plasmid.


Assuntos
Triclosan , Animais , Tigeciclina/farmacologia , Triclosan/toxicidade , Escherichia coli , Citrobacter freundii/genética , Antibacterianos/toxicidade , Plasmídeos , Bactérias/genética , Testes de Sensibilidade Microbiana
5.
Mar Environ Res ; 196: 106424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428315

RESUMO

Environmental research plays a crucial role in formulating novel approaches to pollution management and preservation of biodiversity. This study aims to assess the potential harm of pharmaceutical triclosan (TCS) to non-target aquatic organism, the mussel Mytilus galloprovincialis. Furthermore, our study investigates the potential effectiveness of TiO2 and ZnO nanomaterials (TiO2 NPs and ZnO NPs) in degrading TCS. To ascertain the morphology, structure, and stability of the nanomaterials, several chemical techniques were employed. To evaluate the impact of TCS, TiO2 NPs, and ZnO NPs, both physiological (filtration rate (FR) and respiration rate (RR)), antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST)) activities and malondialdehyde (MDA) contents were measured in M. galloprovincialis gills and digestive gland. The mussel's responses varied depending on the contaminant, concentration, and organ, underscoring the significance of compiling these factors in ecotoxicity tests. The main toxic mechanisms of TCS and ZnO NPs at a concentration of 100 µg/L were likely to be a decrease in FR and RR, an increase in oxidative stress, and increased lipid peroxidation. Our findings indicate that a mixture of TCS and NPs has an antagonist effect on the gills and digestive gland. This effect is particularly notable in the case of TCS2 = 100 µg/L combined with TiO2 NP2 = 100 µg/L, which warrants further investigation to determine the underlying mechanism. Additionally, our results suggest that TiO2 NPs are more effective than ZnO NPs at degrading TCS, which may have practical implications for pharmaceutical control in marine ecosystems and in water purification plants. In summary, our study provides valuable information on the impact of pharmaceuticals on non-target organisms and sheds light on potential solutions for their removal from aqueous environments.


Assuntos
Mytilus , Nanopartículas , Triclosan , Poluentes Químicos da Água , Óxido de Zinco , Animais , Organismos Aquáticos/metabolismo , Triclosan/toxicidade , Óxido de Zinco/toxicidade , Ecossistema , Estresse Oxidativo , Nanopartículas/toxicidade , Catalase/metabolismo , Preparações Farmacêuticas , Poluentes Químicos da Água/toxicidade
6.
Aquat Toxicol ; 269: 106884, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458066

RESUMO

Triclosan (TCS), recognized as an endocrine disruptor, has raised significant concerns due to its widespread use and potential health risks. To explore the impact of TCS on lipid metabolism, both larval and adult zebrafish were subjected to acute and chronic exposure to TCS. Through analyzes of biochemical and physiological markers, as well as Oil Red O (ORO) and hematoxylin and eosin (H&E) staining, our investigation revealed that TCS exposure induced hepatic and intestinal lipid accumulation in larval and adult zebrafish, leading to structural damage and inflammatory responses in these tissues. The strong affinity of TCS with PPARγ and subsequent pathway activation indicate that PPARγ pathway plays a crucial role in TCS-induced lipid buildup. Furthermore, we observed a decrease in m6A-RNA methylation levels in the TCS-treated group, which attributed to the increased activity of the demethylase FTO and concurrent suppression of the methyltransferase METTL3 gene expression by TCS. The alteration in methylation dynamics is identified as a potential underlying mechanism behind TCS-induced lipid accumulation. To address this concern, we explored the impact of folic acid-a methyl donor for m6A-RNA methylation-on lipid accumulation in zebrafish. Remarkably, folic acid administration partially alleviated lipid accumulation by restoring m6A-RNA methylation. This restoration, in turn, contributed to a reduction in inflammatory damage observed in both the liver and intestines. Additionally, folic acid partially mitigates the up-regulation of PPARγ and related genes induced by TCS. These findings carry substantial implications for understanding the adverse effects of environmental pollutants such as TCS. They also emphasize the promising potential of folic acid as a therapeutic intervention to alleviate disturbances in lipid metabolism induced by environmental pollutants.


Assuntos
Adenina/análogos & derivados , Triclosan , Poluentes Químicos da Água , Animais , Triclosan/toxicidade , Triclosan/metabolismo , Peixe-Zebra/metabolismo , 60697 , PPAR gama/genética , PPAR gama/metabolismo , Poluentes Químicos da Água/toxicidade , Fígado , Lipídeos , Intestinos , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia
7.
Aquat Toxicol ; 270: 106899, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492288

RESUMO

Triclosan (TCS) is a wide-spectrum antibacterial agent that is found in various water environments. It has been reported to have estrogenic effects. However, the impact of TCS exposure on the reproductive system of zebrafish (Danio rerio) throughout their life cycle is not well understood. In this study, zebrafish fertilized eggs were exposed to 0, 10, and 50 µg/L TCS for 120 days. The study investigated the effects of TCS exposure on brain and testis coefficients, the expression of genes related to the hypothalamus-pituitary-gonadal (HPG) axis, hormone levels, vitellogenin (VTG) content, histopathological sections, and performed RNA sequencing of male zebrafish. The results revealed that life cycle TCS exposure had significant effects on zebrafish reproductive parameters. It increased the testis coefficient, while decreasing the brain coefficient. TCS exposure also led to a decrease in mature spermatozoa and altered the expression of genes related to the HPG axis. Furthermore, TCS disrupted the balance of sex hormone levels and increased VTG content of male zebrafish. Transcriptome sequencing analysis indicated that TCS affected reproductive endocrine related pathways, including PPAR signaling pathway, cell cycle, GnRH signaling pathway, steroid biosynthesis, cytokine-cytokine receptor interaction, and steroid hormone biosynthesis. Protein-protein interaction (PPI) network analysis confirmed the enrichment of hub genes in these pathways, including bub1bb, ccnb1, cdc20, cdk1, mcm2, mcm5, mcm6, plk1, and ttk in the brain, as well as fabp1b.1, fabp2, fabp6, ccr7, cxcl11.8, hsd11b2, and hsd3b1 in the testis. This study sheds light on the reproductive endocrine-disrupting mechanisms of life cycle exposure to TCS.


Assuntos
Triclosan , Poluentes Químicos da Água , Animais , Masculino , Peixe-Zebra/metabolismo , Triclosan/toxicidade , Triclosan/metabolismo , Poluentes Químicos da Água/toxicidade , Estágios do Ciclo de Vida , Hormônios Esteroides Gonadais/metabolismo , Esteroides/metabolismo
8.
Toxicol Ind Health ; 40(5): 254-271, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518096

RESUMO

Triclosan (TCS), an antimicrobial drug, is known to occupy different compartments in aquatic ecosystems. The present study focused to evaluate the reproductive toxicity of triclosan, at environmentally relevant (0.009 and 9 µg L-1) and sublethal (176.7 µg L-1) concentrations for 90 days in the pre-spawning phase of the fish, Anabas testudineus. The reproductive biomarkers, namely, gonadal steroidogenic enzymes, expression of aromatic genes, levels of serum gonadotropins, sex hormones, and histology of gonads were analyzed. The weight of the animal, brain weights along with gonadosomatic index decreased while mucus deposition increased significantly at all concentrations of triclosan as the primary defensive mechanism to prevent the entry of toxicants. Triclosan disrupted gonadal steroidogenesis as evidenced by a reduction in the activities of gonadal steroidogenic enzymes. The expressions of cyp19a1a and cyp19a1b genes were up-regulated in the brain of both sexes and testis, while down-regulated in the ovary indicating estrogenic effects of the compound. The endocrine-disrupting effects of triclosan were confirmed. The current results suggest that chronic exposure to triclosan altered reproductive endpoints thereby impairing normal reproductive functions in fish.


Assuntos
Anti-Infecciosos , Triclosan , Masculino , Feminino , Animais , Triclosan/toxicidade , Ecossistema , Peixes , Anti-Infecciosos/toxicidade , Água Doce
9.
Ecotoxicol Environ Saf ; 273: 116115, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377781

RESUMO

Triclosan (TCS) is a widely used synthetic, with broad-spectrum antibacterial properties found in both pharmaceuticals and personal care products. More specifically, it is hepatotoxic in rodents and exhibits differential effects in mice and humans. However, the mechanisms underlying TCS-induced liver toxicity have not been elucidated. This study examined the role of the toll-like receptor 4 (TLR4)/ nuclear factor kappa B (NF-κB)/ nod-like receptor protein 3 (NLRP3) pathway in TCS-exposed liver toxicity by established a long-life TCS-exposed mice liver injury model. The 24 C57BL/6 pregnant mice exposed to TCS (0, 50 and 100 mg/kg) every day during the gestation and nursing period. After weaning, the male mice were left to continue administrate with TCS until 8 weeks of age. Then, mice in each group were sacrificed for investigation. Long-life exposure to TCS resulted in a reduction of body weight in growth mice. TCS exposure caused the increase of serum ALT, AST and ALP. The situation of inflammatory cell infiltration, macrophage recruitment and collagen fiber deposition in TCS-exposed mice liver tissues were performed by histological analysis including hematoxylin-eosin, Masson, Sirius red, and immunohistochemistry staining. Protein expression levels in TLR4/NF-κB/NLRP3 pathway was measured through Western blot, and the NLRP3 inflammasome activation was measured using real-time quantitative PCR (RT-qPCR). The results showed that exposure to TCS elevated TLR4, myeloid differentiation factor 88 (Myd88), TNF receptor associated factor 6 (TRAF6), enhanced NF-κB activation, and affected NLRP3 inflammasome activation in mice liver. Collectively, these findings indicate that long-life exposure to TCS-induced mice by upregulating the TLR4-Myd88-TRAF6 pathway, activating the NF-κB signaling cascade, initiating the NLRP3 inflammasome pathway, and ultimately leading to liver injury, including inflammation, hepatocyte pyroptosis and hepatofibrosis. Henceforth, the TLR4/NF-κB/NLRP3 pathway may now provide a theoretical basis and valuable therapeutic targets for overcoming TCS-induced liver toxicity.


Assuntos
NF-kappa B , Triclosan , Humanos , Camundongos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Triclosan/toxicidade , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo
10.
Ecotoxicol Environ Saf ; 273: 116121, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402792

RESUMO

In recent years, nanoplastics (NPs) and triclosan (TCS, a pharmaceutical and personal care product) have emerged as environmental pollution issues, and their combined presence has raised widespread concern regarding potential risks to organisms. However, the combined toxicity and mechanisms of NPs and TCS remain unclear. In this study, we investigated the toxic effects of polystyrene NPs and TCS and their mechanisms on KGN cells, a human ovarian granulosa cell line. We exposed KGN cells to NPs (150 µg/mL) and TCS (15 µM) alone or together for 24 hours. Co-exposure significantly reduced cell viability. Compared with exposure to NPs or TCS alone, co-exposure increased reactive oxygen species (ROS) production. Interestingly, co-exposure to NPs and TCS produced synergistic effects. We examined the activity of superoxide dismutase (SOD) and catalase (CAT), two antioxidant enzymes; it was significantly decreased after co-exposure. We also noted an increase in the lipid oxidation product malondialdehyde (MDA) after co-exposure. Furthermore, co-exposure to NPs and TCS had a more detrimental effect on mitochondrial function than the individual treatments. Co-exposure activated the NRF2-KEAP1-HO-1 antioxidant stress pathway. Surprisingly, the expression of SESTRIN2, an antioxidant protein, was inhibited by co-exposure treatments. Co-exposure to NPs and TCS significantly increased the autophagy-related proteins LC3B-II and LC3B-Ⅰ and decreased P62. Moreover, co-exposure enhanced CASPASE-3 expression and inhibited the BCL-2/BAX ratio. In summary, our study revealed the synergistic toxic effects of NPs and TCS in vitro exposure. Our findings provide insight into the toxic mechanisms associated with co-exposure to NPs and TCS to KGN cells by inducing oxidative stress, activations of the NRF2-KEAP1-HO-1 pathway, autophagy, and apoptosis.


Assuntos
Triclosan , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Triclosan/toxicidade , Triclosan/metabolismo , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Microplásticos/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Células da Granulosa/metabolismo
11.
Chemosphere ; 352: 141395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342143

RESUMO

Triclosan (TCS), a prevalent contaminant in aquatic ecosystems, has been identified as a potential threat to both aquatic biota and human health. Despite its widespread presence, research into the immunotoxic effects of TCS on aquatic organisms is limited, and the underlying mechanisms driving these effects remain largely unexplored. Herein, we investigated the developmental and immune toxicities of environmentally relevant concentrations of TCS in zebrafish, characterized by morphological anomalies, histopathological impairments, and fluctuations in cytological differentiation and biomarkers following both acute (from 6 to 72/120 hpf) and chronic exposure periods (from 30 to 100 dpf). Specifically, acute exposure to TCS resulted in a significant increase in innate immune cells, contrasted by a marked decrease in T cells. Furthermore, we observed that TCS exposure elicited oxidative stress and a reduction in global m6A levels, alongside abnormal expressions within the m6A modification enzyme system in zebrafish larvae. Molecular docking studies suggested that mettl3 might be a target molecule for TCS interaction. Intriguingly, the knock-down of mettl3 mirrored the effects of TCS exposure, adversely impacting the growth and development of zebrafish, as well as the differentiation of innate immune cells. These results provide insights into the molecular basis of TCS-induced immunotoxicity through m6A-RNA epigenetic modification and aid in assessing its ecological risks, informing strategies for disease prevention linked to environmental contaminants.


Assuntos
Triclosan , Poluentes Químicos da Água , Animais , Humanos , Triclosan/toxicidade , Triclosan/metabolismo , Peixe-Zebra/metabolismo , Regulação para Baixo , 60697 , Ecossistema , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
12.
Plant Physiol Biochem ; 207: 108327, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271860

RESUMO

Triclosan has been extensively used as a preservative in cosmetics and personal care products. However, its accumulation represents a real environmental threat. Thus, its phytotoxic impact needs more consideration. Our study was conducted to highlight the phytotoxic effect of triclosan on the growth, ROS homeostasis, and detoxification metabolism of two different plant species i.e., legumes (Glycine max) and grass (Avena sativa). Moreover, we investigated the potentiality of plant growth-promoting bacteria (ST-PGPB) in mitigating the phytotoxic effect of triclosan. Triclosan induced biomass (fresh and dry weights) reduction in both plants, but to a higher extent in oats. This decline was associated with a noticeable increment in the oxidative damage (e.g., MDA and H2O2) and detoxification metabolites such as metallothionein (MTC), phytochelatins (PCs), and glutathione-S-transferase (GST). This elevation was associated with a remarkable reduction in both enzymatic and non-enzymatic antioxidants. On the other hand, the bioactive strain of ST-PGPB, Salinicoccus sp. JzA1 significantly alleviated the harmful effect of triclosan on both soybean and oat plants by enhancing their biomass, photosynthesis, as well as levels of minerals (K, Ca, P, Mn, and Zn). In parallel, a striking quenching in oxidative damage and an obvious improvement in non-enzymatic (polyphenols, tocopherols, flavonoids) and enzymatic antioxidants were observed. Furthermore, Salinicoccus sp. JzA1 augmented the detoxification metabolism by enhancing the levels of phytochelatins, metallothionein, and glutathione-S-transferase (GST) activity in a species-specific manner which is more apparent in soybean rather than in oat plants. To this end, stress mitigating impact of Salinicoccus sp. JzA1 provides a basis to improve the resilience of crop species under cosmetics and personal care products toxicity.


Assuntos
Cosméticos , Triclosan , Avena/metabolismo , Triclosan/metabolismo , Triclosan/toxicidade , Soja , Espécies Reativas de Oxigênio/metabolismo , Fitoquelatinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Homeostase , Cosméticos/metabolismo , Cosméticos/farmacologia , Metalotioneína/metabolismo , Transferases/metabolismo
13.
Ecotoxicol Environ Saf ; 271: 115866, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199221

RESUMO

Triclosan (TCS), a broad-spectrum, lipophilic, and antibacterial agent, has been commonly used in cosmetics, medical devices, and household products. The toxicity of TCS has recently become a research hotspot. Emerging evidence has shown that TCS can easily migrate to humans and animals and cause adverse effects on various target organs. However, the effects of TCS exposure on nephrotoxicity and underlying mechanisms remain unknown. The aim of the present study was to explore TCS-induced nephrotoxicity. Therefore, we establish a mouse model based on adult male mice to explore the effects of 10-week TCS exposure (50 mg/kg) on kidney. After mice were sacrificed, their blood, feces, and renal tissues were harvested for further analysis. We found that TCS treatment dramatically caused kidney structural damage, and increased blood urea nitrogen (BUN) and creatinine (Cr) expression levels, which indicated renal dysfunction. In addition, TCS exposure increased the malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and total cholesterol (TCHO) expression levels, which indicated oxidative stress and lipid metabolism changes. The RNA sequencing (RNA-seq) of kidney tissue identified 221 differentially expressed genes (DEGs) enriched in 50 pathways, including drug metabolism-other enzymes, oxidative phosphorylation, glutathione metabolism, and inflammatory mediator regulation of TRP channels signaling pathways. The full-length 16S rRNA gene sequencing results showed that TCS exposure altered the community of gut microbiota, which was closely related to renal function damage. The above findings provide new insights into the mechanism of TCS-induced nephrotoxicity.


Assuntos
Microbioma Gastrointestinal , Nefropatias , Triclosan , Humanos , Adulto , Masculino , Camundongos , Animais , Triclosan/toxicidade , Disbiose/induzido quimicamente , RNA Ribossômico 16S/genética , Rim
14.
Environ Pollut ; 344: 123369, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253165

RESUMO

The interaction of multiple stressors in freshwater ecosystems may lead to adverse effects on aquatic communities and their ecological functions. Microplastics (MPs) are a class of contaminants of emerging concern that can exert both direct and indirect ecotoxicological effects. A growing number of studies have investigated MPs-attached microbial communities, but the interaction between MPs and substrate-associated biofilm (i.e., on natural river substrates, such as stones and sediments) remains poorly studied. In this work, the combined effects of polyethylene MPs (PE-MPs) with a particle size of 10-45 µm (2 mg/L) and the antimicrobial triclosan (TCS) (20 µg/L) were investigated on river biofilms through a short-term exposure experiment (72 h). To the best of authors' knowledge, this is the first time that the combined effects of MPs and chemical contaminants in substrate-associated river biofilms were assessed. Different response parameters were evaluated, including (i) exposure assessment and ii) contaminants effects at different levels: bacterial community composition, antibiotic resistance, extracellular polymeric substances (EPS), photosynthetic efficiency (Yeff), and leucine aminopeptidase activity (LAPA). Triclosan was accumulated in river biofilms (1189-1513 ng/g dw) alongside its biotransformation product methyl-triclosan (20-29 ng/g dw). Also, PE-MPs were detected on biofilms (168-292 MP/cm2), but they had no significant influence on the bioaccumulation and biotransformation of TCS. A moderate shift in bacterial community composition was driven by TCS, regardless of PE-MPs co-exposure (e.g., increased relative abundance of Sphingomonadaceae family). Additionally, Yeff and EPS content were significantly disrupted in TCS-exposed biofilms. Therefore, the most remarkable effects on river biofilms were related to the antimicrobial TCS, whereas single PE-MPs exposure did not alter any of the evaluated parameters. These results demonstrate that biofilms might act as environmental sink of MPs. Although no interaction between PE-MPs and TCS was observed, the possible indirect impact of other MPs-adsorbed contaminants on biofilms should be further assessed.


Assuntos
Anti-Infecciosos , Triclosan , Poluentes Químicos da Água , Polietileno/toxicidade , Triclosan/toxicidade , Microplásticos , Plásticos , Rios , Ecossistema , Biofilmes , Biotransformação , Poluentes Químicos da Água/toxicidade
15.
J Water Health ; 22(1): 36-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295071

RESUMO

In this study, the occurrence and environmental risks related to triclosan (TCS) in the two wastewater treatment plants (WWTPs) were investigated in Isfahan, Iran. Influent and effluent samples were collected and analyzed by dispersive liquid-liquid microextraction (DLLME)-GC-MS method with derivatization. Moreover, the risk of TCS exposure was conducted for aquatic organisms (algae, crustaceans, and fishes) and humans (males and females). TCS mean concentrations in influent and effluent of WWTPs were in the range of 3.70-52.99 and 0.83-1.09 µg/L, respectively. There were also no differences in the quantity of TCS and physicochemical parameters among the two WWTPs. The mean risk quotient (RQ) for TCS was higher than 1 (in algae) with dilution factors (DFs) equal to 1 in WWTP1. Moreover, the RQ value was higher than 1 for humans based on the reference dose of MDH (RFDMDH) in WWTP1. Furthermore, TCS concentration in wastewater effluent was the influential factor in varying the risk of TCS exposure. The results of the present study showed the risk of TCS exposure from the discharge of effluent of WWTP1 was higher than WWTP2. Moreover, the results of this study may be suitable for promoting WWTP processes to completely remove micropollutants.


Assuntos
Triclosan , Poluentes Químicos da Água , Purificação da Água , Humanos , Triclosan/toxicidade , Triclosan/análise , Antibacterianos , Águas Residuárias , Medição de Risco , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
16.
Pestic Biochem Physiol ; 198: 105714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225063

RESUMO

The rise in the utilization of pesticides within industrial and agricultural practices has been linked to the occurrence of these substances in aquatic environments. The objective of this work was to evaluate the uptake and adverse impacts of Diuron (Di) and Triclosan (TCS) on the mussel species Mytilus galloprovincialis. To accomplish this, the accumulation and toxicity of these pesticides were gauged following a brief period of exposure spanning 14 days, during which the mussels were subjected to two concentrations (50 and 100 µg/L) of each substance that are ecologically relevant. Chemical analysis of Di and TCS within gills and digestive gland showed that these pesticides could be accumulated in mussel's tissues. In addition, Di and TCS are preferably accumulated in digestive gland. Measured biomarkers included physiological parameters (filtration FC and respiration RC capacity), antioxidant enzyme activities (superoxide dismutase and catalase), oxidative damage indicator (Malondialdheyde concentration) and neurotoxicity level (acetylcholinesterase activity) were evaluated in gills and digestive glands. Both pesticides were capable of altering the physiology of this species by reducing the FC and RC in concentration and chemical dependent manner. Both pesticides induced also an oxidative imbalance causing oxidative stress. The high considered concentration exceeded the antioxidant defense capacity of the mussel and lead to membrane lipid peroxidation that resulted in cell damage. Finally, the two pesticides tested were capable of interacting with the neuromuscular barrier leading to neurotoxicity in mussel's tissues by inhibiting acetylcholinesterase. The ecotoxicological effect depended on the concentration and the chemical nature of the contaminant. Obtained results revealed also that the Di may exert toxic effects on M. galloprovincialis even at relatively low concentrations compared to TCS. In conclusion, this study presents innovative insights into the possible risks posed by Diuron (Di) and Triclosan (TCS) to the marine ecosystem. Moreover, it contributes essential data to the toxicological database necessary for developing proactive environmental protection measures.


Assuntos
Mytilus , Praguicidas , Triclosan , Poluentes Químicos da Água , Animais , Mytilus/metabolismo , Antioxidantes/farmacologia , Triclosan/toxicidade , Acetilcolinesterase/metabolismo , Diurona/toxicidade , Ecossistema , Estresse Oxidativo , Biomarcadores/metabolismo , Praguicidas/farmacologia , Poluentes Químicos da Água/toxicidade
17.
Ecotoxicol Environ Saf ; 269: 115772, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043413

RESUMO

Triclosan (TCS) is a broad-spectrum antibacterial chemical widely presents in people's daily lives. Epidemiological studies have revealed that TCS exposure may affect female puberty development. However, the developmental toxicity after low-dose TCS continuous exposure remains to be confirmed. In our study, 8-week-old ICR female mice were continuously exposed to TCS (30, 300, 3000 µg/kg/day) or vehicle (corn oil) from 2 weeks before mating to postnatal day 21 (PND 21) of F1 female mice, while F1 female mice were treated with TCS intragastric administration from PND 22 until PND 56. Vaginal opening (VO) observation, hypothalamic-pituitary-ovarian (HPO) axis related hormones and genes detection, and ovarian transcriptome analysis were carried out to investigate the effects of TCS exposure on puberty onset. Meanwhile, human granulosa-like tumor cell lines (KGN cells) were exposed to TCS to further explore the biological mechanism of the ovary in vitro. The results showed that long-term exposure to low-dose TCS led to approximately a 3-day earlier puberty onset in F1 female mice. Moreover, TCS up-regulated the secretion of estradiol (E2) and the expression of ovarian steroidogenesis genes. Notably, ovarian transcriptomes analysis as well as bidirectional validation in KGN cells suggested that L-type calcium channels and Pik3cd were involved in TCS-induced up-regulation of ovarian-related hormones and genes. In conclusion, our study demonstrated that TCS interfered with L-type calcium channels and activated Pik3cd to up-regulate the expression of ovarian steroidogenesis and related genes, thereby inducing the earlier puberty onset in F1 female mice.


Assuntos
Puberdade Precoce , Triclosan , Animais , Feminino , Humanos , Camundongos , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Estradiol/metabolismo , Camundongos Endogâmicos ICR , Puberdade , Puberdade Precoce/induzido quimicamente , Triclosan/efeitos adversos , Triclosan/toxicidade , Classe I de Fosfatidilinositol 3-Quinases/efeitos dos fármacos
18.
Arch Toxicol ; 98(3): 883-895, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38055018

RESUMO

Triclosan (TCS) is an antimicrobial compound widely used in personal hygiene products such as mouthwash and toothpaste; and has been found in human blood, breast milk, and urine. Interleukin (IL)-6 and IL-1 beta (IL-1ß) are pro-inflammatory cytokines regulating cell growth, tissue repair, and immune function; increased levels of each have been associated with many diseases, including cancer. Previous studies showed that TCS at concentrations between 0.05 and 5 µM consistently increased the secretion of IL-1ß and IL-6 from human immune cells within 24 h of exposure. The current study demonstrates that this increase in secretion was not due simply to release of existing stores but was due to an increase in cellular production/levels (both secreted and intracellular levels) of each of these cytokines. Production of IL-1ß and IL-6 was increased by exposure to one or more concentration of TCS at each length of exposure (10 min, 30 min, 6 h, and 24 h). TCS-induced stimulation of cytokine production was shown to be dependent on the mitogen-activated protein kinase (MAPK) p44/42 (ERK 1/2). It was also shown that these TCS-induced increases in IL-1ß and IL6 production were accompanied by increased mRNA for IL-1ß and IL-6. The ability of TCS to increase production indicates that rather than activating a self-limiting process of depleting cells of already existing stores of IL-1ß or IL-6, TCS can stimulate a process that has the capacity to provide sustained production of these cytokines and thus may lead to chronic inflammation and its pathological consequences.


Assuntos
Interleucina-6 , Triclosan , Feminino , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Triclosan/toxicidade , Citocinas , Antibacterianos , Células Cultivadas , Interleucina-8/genética
19.
Food Chem Toxicol ; 183: 114305, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052405

RESUMO

Triclosan (TCS) is an antimicrobial compound incorporated into more than 2000 consumer products. This compound is frequently detected in the human body and causes ubiquitous contamination in the environment, thereby raising concerns about its impact on human health and environmental pollution. Here, we demonstrated that 20 weeks' exposure of TCS drove the development of glucose intolerance by inducing compositional and functional alterations in intestinal microbiota in rats. Fecal-transplantation experiments corroborated the involvement of gut microbiota in TCS-induced glucose-tolerance impairment. 16S rRNA gene-sequencing analysis of cecal contents showed that TCS disrupted the gut microbiota composition in rats and increased the ratio of Firmicutes to Bacteroidetes. Cecal metabolomic analyses detected that TCS altered host metabolic pathways that are linked to host glucose and amino acid metabolism, particularly branched-chain amino acid (BCAA) biosynthesis. BCAA measurement confirmed the increase in serum BCAAs in rats exposed to TCS. Western blot and immunostaining results further confirmed that elevated BCAAs stimulated mTOR, a nutrient-sensing complex, and following IRS-1 serine phosphorylation, resulted in insulin resistance and glucose intolerance. These results suggested that TCS may induce glucose metabolism imbalance by regulating BCAA concentration by remodeling the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Intolerância à Glucose , Triclosan , Humanos , Ratos , Animais , Intolerância à Glucose/induzido quimicamente , Triclosan/toxicidade , RNA Ribossômico 16S/genética , Glucose
20.
Chemosphere ; 349: 140852, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048832

RESUMO

Certain environmental chemicals affect the body's energy balance and are known as metabolism disrupting chemicals (MDCs). MDCs have been implicated in the development of metabolic diseases, such as obesity and type 2 diabetes. In contrast to their well-known impact on developing adipocytes, MDC effects leading to altered energy balance and development of insulin resistance in mature white adipocytes, constituents of adult adipose tissue, are largely unclear. Here, we investigated the effects of six well-established environmental MDCs (bisphenol A (BPA), perfluorooctanoic acid (PFOA), triclosan (TCS), p,p-dichlorodiphenyl-dichloroethylene (ppDDE), tributyltin chloride (TBT) and triphenyl phosphate (TPP)) on mature human white adipocytes derived from mesenchymal stem cells in vitro. We aimed to identify biomarkers and sensitive endpoints of their metabolism disrupting effects. While most of the tested exposures had no effect on adipocyte glucose consumption, lipid storage and assessed gene expression endpoints, the highest concentration of triclosan affected the total lipid storage and adipocyte size, as well as glucose consumption and mRNA expression of the glucose transporter GLUT1, leptin and adiponectin. Additionally, an increased expression of adiponectin was observed with TPP and the positive control PPARγ agonist rosiglitazone. In contrast, the lipidomic analysis of the cell culture medium after a 3-day exposure was extremely sensitive and revealed concentration-dependent changes in the extracellular lipidome of adipocytes exposed to nearly all studied chemicals. While some of the extracellular lipidome changes were specific for the MDC used, some effects were found common to several tested chemicals and included increases in lysophosphatidylcholines, glycerophospholipids and ceramides and a decrease in fatty acids, with possible implications in inflammation, lipid and glucose uptake. This study points to early signs of metabolic disruption and likely systemic effects of mature adipocyte exposure to environmental chemicals, as well as to the need to include lipidomic endpoints in the assessment of adverse effects of MDCs.


Assuntos
Diabetes Mellitus Tipo 2 , Triclosan , Humanos , Adipócitos Brancos , Lipidômica , Adiponectina , Triclosan/toxicidade , Glucose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...